A Comparison of Known Codes, Random Codes, and the Best Codes

نویسندگان

  • Samuel J. MacMullan
  • Oliver M. Collins
چکیده

This paper calculates new bounds on the size of the performance gap between random codes and the best possible codes. The first result shows that, for large block sizes, the ratio of the error probability of a random code to the sphere-packing lower bound on the error probability of every code on the binary symmetric channel (BSC) is small for a wide range of useful crossover probabilities. Thus even far from capacity, random codes have nearly the same error performance as the best possible long codes. The paper also demonstrates that a small reduction k ~ k in the number of information bits conveyed by a codeword will make the error performance of an (n; ~ k) random code better than the sphere-packing lower bound for an (n; k) code as long as the channel crossover probability is somewhat greater than a critical probability. For example, the sphere-packing lower bound for a long (n; k), rate 1=2, code will exceed the error probability of an (n; ~ k) random code if k ~ k > 10 and the crossover probability is between 0:035 and 0:11 = H (1=2). Analogous results are presented for the binary erasure channel (BEC) and the additive white Gaussian noise (AWGN) channel. The paper also presents substantial numerical evaluation of the performance of random codes and existing standard lower bounds for the BEC, BSC, and the AWGN channel. These last results provide a useful standard against which to measure many popular codes including turbo codes, e.g., there exist turbo codes that perform within 0.6 dB of the bounds over a wide range of block lengths.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constacyclic Codes over Group Ring (Zq[v])/G

Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...

متن کامل

New Good Quasi-cyclic Codes over Gf(3)

Abstract In this paper some good quasi-cyclic codes over GF(3) are presented. These quasi-cyclic codes improve the already known lower bounds on the minimum distance of the previously known quasi-cyclic codes. Even though these codes do not improve the minimum distance of the best unstructured code known, their beautiful structure and simplicity provide several advantages in comparison to other...

متن کامل

Use of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes

Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...

متن کامل

Some notes on the characterization of two dimensional skew cyclic codes

‎‎A natural generalization of two dimensional cyclic code ($T{TDC}$) is two dimensional skew cyclic code‎. ‎It is well-known that there is a correspondence between two dimensional skew cyclic codes and left ideals of the quotient ring $R_n:=F[x,y;rho,theta]/_l$‎. ‎In this paper we characterize the left ideals of the ring $R_n$ with two methods and find the generator matrix for two dimensional s...

متن کامل

An approach to fault detection and correction in design of systems using of Turbo ‎codes‎

We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...

متن کامل

An efficient secure channel coding scheme based on polar codes

In this paper, we propose a new framework for joint encryption encoding scheme based on polar codes, namely efficient and secure joint secret key encryption channel coding scheme. The issue of using new coding structure, i.e. polar codes in Rao-Nam (RN) like schemes is addressed. Cryptanalysis methods show that the proposed scheme has an acceptable level of security with a relatively smaller ke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 44  شماره 

صفحات  -

تاریخ انتشار 1998